Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
The Korean Journal of Physiology and Pharmacology ; : 443-454, 1998.
Article in English | WPRIM | ID: wpr-728695

ABSTRACT

The present study was attempted to investigate the effect of vasoactive intestinal polypeptide (VIP) on secretion of catecholamines (CA) and to establish whether there is the existence of a noncholinergic mechanism in adrenomedullary CA secretion from the isolated perfused rat adrenal gland. The perfusion into an adrenal vein of VIP (3 X 10-6 M) for 5 min or the injection of acetylcholine (ACh, 5.32 X 10-3 M) resulted in great increases in CA secretion. Tachyphylaxis to releasing effect of CA evoked by VIP was not observed by the repeated perfusion. The net increase in adrenal CA secretion evoked by VIP still remained unaffected in the presence of atropine or chlorisondamine. However, the CA release in response to ACh was greatly inhibited by the pretreatment with atropine or chlorisondamine. The releasing effects of CA evoked by either VIP or ACh were depressed by pretreatment with nicardipine, TMB-8, and the perfusion of Ca2+-free medium. Moreover, VIP- as well as ACh-evoked CA secretory responses were markedly inhibited under the presence of (Lys1, Pro2.5, Arg3.4, Tyr6)-VIP or naloxone. CA secretory responses induced by ACh and high K+ (5.6 X 10-2 M) were potentiated by infusion of VIP (3 X 10-6 M for 5 min). Taken together, these experimental results indicate that VIP causes CA release in a fashion of calcium ion-dependence, suggesting strongly that there exists a noncholinergic mechanism that may be involved in the regulation of adrenomedullary CA secretion through VIP receptors in the rat adrenal gland, and that VIP may be the noncholinergic excitatory secretagogue present in the chromaffin cells.


Subject(s)
Animals , Rats , Acetylcholine , Adrenal Glands , Adrenal Medulla , Atropine , Calcium , Catecholamines , Chlorisondamine , Chromaffin Cells , Naloxone , Nicardipine , Perfusion , Receptors, Vasoactive Intestinal Peptide , Tachyphylaxis , Vasoactive Intestinal Peptide , Veins
2.
Korean Circulation Journal ; : 1197-1207, 1995.
Article in Korean | WPRIM | ID: wpr-221930

ABSTRACT

BACKGROUND: The influence of gamma-aminobutyric acid(GABA), which is well-known as a major inhibitory neurotransmitter in central nervous system, on secretion of catecholamines(CA) was investigated in the isolated perfused rat adrenal gland. METHODS: Mature male Sprague-Dawley rats were anesthetized with ether. Ther adrenal gland was isolated by the methods f Wakade. A cannula used for perfusion of the adrenal gladn was inserted into the distal end of the renal vein. The adrenal gland, along with ligated blood vessels and the cannula, was carefully removed from the animal and placed on a platform of a leucite chamber. RESULTS: GABA given into an adrenal vein of the rat produced markedly secretion of CA from the adrenal gland. Tachyphylaxis to the relesing effect of CA evoked by GABA was observed. The secretory effect of CA evoked by GABA was attenuated singnificantly by pretreatment with mecamylamine or atropine. Ouabain inhibited greatly the secretory response of GABA. When omitting the external potassium ion, the basal release of CA was increased. During this period GABA no longer revealed the increase in CA release. CA secretion evoked by GABA was blocked significantly by perfusion of calcium-free Krebs solution containing 5mMEGTA for 30-min. Pretreatment with bicuculline or picrotoxin inhibited CA secretion evoked by GABA as well as ACh. ACh-evoked CA release was potentiated by GABA infusion(400ug/30min). CONCLUSION: The experimental findings suggest that GABA causes the secretory effect of CA in a fashion of external calcium and potassium iosn-dependence, and that this releasing effect of CA induced by GABA may be exterted by stimulation of GABAergic A-reccptors located on adrenomedullary chromaffine cell, which is likely associated with cholinergic receptor activation evoked CA secretion.


Subject(s)
Animals , Humans , Male , Rats , Adrenal Glands , Atropine , Bicuculline , Blood Vessels , Calcium , Catheters , Central Nervous System , Ether , gamma-Aminobutyric Acid , Mecamylamine , Neurotransmitter Agents , Ouabain , Perfusion , Picrotoxin , Potassium , Rats, Sprague-Dawley , Renal Veins , Tachyphylaxis , Veins
SELECTION OF CITATIONS
SEARCH DETAIL